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1     Introduction 

This document is the final report for the grant titled "Research in Image-Based Cooperation 
for Autonomous Conventional Aerial Vehicles", issued in May of 2005 by the Air Force Office 
of Scientific Research. The research was performed during the period May. 2005 through 
September, 2008. 

The overall goal of the research described was to develop a structure in which the information 
from a vision sensor (generally, a CCD camera) can be incorporated into the information 
stream from the sensors on an inexpensive aerial vehicle. The purpose of this is to enhance 
cooperative activities of multiple such vehicles. One of the defining characteristics is that 
these are conventional airframes; that is, they are fixed-wing aircraft that generate lift in the 
standard manner. 

1.1    Areas of Research 

The work described herein is preliminary in nature. A result of this is that it is piecemeal. 
Three avenues of research were undertaken, with the goal of bringing them together as they 
reached maturity. In the three years of the effort, solid gains were made in each area, but 
none was sufficiently advanced to begin to blend with the others. 

A final point to be made is that in each area, the attempt was to use the least possible 
information from the vision sensor. This is in keeping with the desire to maintain a simple and 
easily-implemented structure, that could be used on minimally-capable hardware. Further, 
in each case the information use was passive; that is, there is no communication required 
between the vehicles. While cooperative work with information sharing has been shown to 
be very effective[l], the load on the computational and communications systems is too great 
for implementation on the classes of vehicles being considered here. 

The three areas of research were 

1. Vision-based Tracking 

In this effort, one aircraft follows another, using information only from the vision sensor 
for guidance. This is a beginning step in cooperative tasks such as cooperative sorties. 

2. Cooperative Observation of Partially Occluded Ground Targets 

One of the primary uses of unmanned aerial vehicles will be the observation of ground 
targets. Most (if not all) of the existing work in this area assumes that the targets are 
visible from all angles. In this effort, that assumption was not made. 

The first step here was to find an orbit for a single vehicle that kept the target in sight. 
The measure of merit was the duration of the orbit, which was maximized. The second 
step, only touched upon before the end of the effort, was to do the problem with a pair 
of vehicles. 

3. Robust Control and On-line Parameter Estimation 



The use of vision sensors introduces additional information into the state estimation 
process. This additional information can be used in at least two ways. First, the 
additional information will produce a solution closer to the actual states when blended 
into the standard data fusion filter generally used on the classes of small, inexpensive 
UAVs envisioned in this report. Second, the information might be taken as explicitly 
redundant; that is, it might be used as a check on the output of the fusion filter. 

In the work reported here, the first approach was used. The resulting estimates of states 
were then used as the bases for (a) a neural net based approach to robust control, and 
(b) a scheme to estimate on-line the physical parameters of the UAV. 

Each of these areas is discussed in detail below. One or more master of science theses were 
written in each area. Before discussing these applications, however, the inclusion of vision 
information in the data fusion filter is addressed. 

1.2    Personnel Supported 

In addition to the principal investigator, who was supported for between zero and four weeks 
during each of the three summers during which the grant was active, the grant supported four 
masters-level graduate students. These were Rajtilok Chakravarty, Jaime Alba-Bohorquez, 
Joe Bhaktiar, and Tatiana Sviridova. These students were also partially supported by the 
MAE department. Cooperative work was done by Dale Turner, another master's student, 
without charge to the grant. Each of these five students wrote a thesis on the topic of 
research. 

At the time of this writing, only one paper has been published as a result of these efforts. 
This is largely due to the timing; much of the work has only recently finished, so that papers 
have not yet been written and submitted. 

2    Including Vision in the Data Fusion Filter 

The basis for much of the work performed under this grant was the inclusion of vision 
information into the data fusion filter (the exception is the vision based tracking section). 
Briefly, we recall that the standard instrumentation found on the class of Unmanned Aerial 
Vehicles in question includes a low-cost inertial measurement system (IMU) and a Global 
Positioning System (GPS) receiver. The outputs from these devices are blended, in effect 
using the GPS results to perform on-line calibrations and bias estimates for the IMU. [2] This 
allows the use of far lighter and less expensive sensors than those needed in the past. 

In the past decade, vision systems (generally, Charge-Coupled Device (CCD) cameras) have 
become widely available and increasingly less expensive. These have been incorporated into 
many current UAV designs. It is well known that it is theoretically possible to estimate 
all velocities and orientations using solely the vision information; this is the Eight-point 
Theorem^]. However, this requires the isolation and tracking of at least eight feature points 



over several frames. This has been investigated, and despite problems, may be viable in 
some cases [4]. 

When additional information is included in the data extraction process, however, the problem 
is much easier[5]. In the work reported here, the only information extracted from the vision 
sensor is the velocity direction. As the orientation of the camera is known relative to the 
UAV, this gives the velocity direction in body frame. In the standard fusion filter, the only 
direct velocity information is from the GPS, which cannot provide information in the body 
frame. This leads to a lack of observability, in particular, the inability to accurately estimate 
sideslip. Using the direction information from the vision sensor eliminates this problem, and 
renders the system fully observable. 

A secondary benefit of including this information is that it is no longer necessary to have a 
full solution from the GPS receiver. Instead, it is sufficient to use the velocity information 
from three satellites. 

The results of the research show that the addition of velocity direction provides a significant 
increase in the accuracy of the data fusion filter. Further, the filter maintains a useful 
estimate even when information from only three GPS satellites is available. These results 
are reported in Chakravarty and Chichka[6], which is included as Appendix A. 

3    Vision-based Tracking 

In this effort, one aircraft follows another, using information only from the vision sensor for 
guidance. It is assumed only that the observing aircraft can extract the silhouette of the 
craft it is following from the camera. The work reported here predates some recent advances 
inthefield[7]. 

Top View Rear View Side View 

Figure 1: Silhouette in bounding box. 

In keeping with the ideal of minimal information, the tracking is performed using only the 
boundaries of the craft being followed, as in Figure 1. No attempt is made to find the 
centroid of the actual silhouette; the center of the box in which it appears is sufficient. In 
Turner [8], it is demonstrated that a simple autopilot can be constructed that uses the size of 
the bounding box as a range estimate, and the center as a direction guide, that successfully 
allows a UAV to follow another conventional airframe of similar capability. The reference is 
included as appendix B. 



4    Cooperative Observation of Ground Targets 

One of the most likely uses of inexpensive UAVs is observation and reconnaissance. In 
this effort, we focused on a particular problem that will likely require cooperation between 
multiple vehicles, that of continuous observation of a partially occluded ground target. While 
there has been much work done in the past two decades on observation of targets both by a 
single UAV ([9, 10] and others) and cooperative pairs ([11, 12] and many others), these have 
involved ground targets that are visible from all angles. 

Target 

^X I Obstruction 

Figure 2: Ground target partially hidden by obstruction. 

In this work, we instead consider targets that are partially occluded; that is, they cannot be 
seen from some angles, as in Figure 2. In the figure, there is a single obstruction, possibly a 
building. The plane is therefore separated into a "visible" region, from which the target can 
be seen, and the invisible region. The research undertaken assumed such a division, though 
it was not assumed that the visible region was the larger. 

The research progressed in two steps. The first involved finding an orbit for a single UAV 
flying at constant altitude and velocity that stayed in the visible region. By piecing together 
a series of coordinated turns, and assuming that the vehicle could see slightly more than 90 
degrees from the nose, such a trajectory was created. The performance index taken was the 
time of the orbit; the objective was to maximize the time that a single vehicle could maintain 
observation, so that other UAVs could be used for other tasks. Descriptive parameters were 
varied to investigate the sensitivity of the orbit duration. 

The second step was to extend the methods of Barth[ll] to this situation. It was found that 
the Lyapunov control approach produced viable controller for this situation. Earth used the 
distances of the vehicles from the target, and from each other, to derive his controller. It 
was shown in the work reported here that only one vehicle needs to be able to see the target. 
Full investigation of the controller with this reduced information was not completed. 

The full report of this effort is provided in [13], which is enclosed as Appendix C. 



5    Analytic Redundancy and On-line Parameter Esti- 
mation 

Two efforts were made in this area. The first involved neural net augmentation of a linear 
autopilot. The second used standard parameter estimation techniques to estimate during 
flight the characteristics of the UAV. 

Recall that the standard linear Kalman Filter in discrete time has the form 

xk+i = Akxk + Bkuk , (1) 

xk = xk + K \zk - Hkxk] (2) 

where the linear system is defined by the relations 

xk+1 = Akxk + Bkuk + wk (3) 

zk = Hkxk + vk. (4) 

In this formulation, xk € 3?" is the state, uk £ 3?m is the known control, and zk G 5RP is the 
measurement. The process and measurements are corrupted by wk and vk, assumed to be 
normally distributed and zero mean (any known non-zero mean is easily subtracted out). K 
is the estimator update gain, the equation for which can be found in any standard reference. 

Most importantly in the equations above, the plant, control, and measurement matrices A, 
B, and H are assumed known in advance for all time steps. This is true for the data fusion 
filter, as the dynamics consist of integrating the accelerometer measurements, and the IMU 
measurement noise enters as w. The measurements come from the GPS, and the system is 
well-known to be (A, H) unobservable. 

Were the vehicle dynamics reliably known, it would make more sense to use them in the 
filter. This is made difficult for two reasons. One is that the linear model is only valid near 
the nominal (usually straight and level) flight condition, while UAVs often take quite severe 
maneuvers. The other is that inexpensive UAYs may have very different flight characteristics, 
even when they are theoretically identical. They also may suffer minor damage in the field. 

In this work, two approaches were taken to dealing with this. The first simply augments 
the nominal linear controller, as in Sharma and Calise[14]. This forces the UAV to act as 
the nominal UAV would, which is important when the vehicle is operating in tight spaces or 
near another vehicle. While useful, this approach is limited. 

Ideally, we would like to be able to operate not only in tight confines, but when GPS is denied. 
This is likely to be increasingly important. Thus, the second approach taken attempts to 
derive the values of the dynamic coefficient matrices on-line, taking advantage of the wealth 
of information provided by GPS and the vision sensor. Then, when GPS fails or is denied, 
the dynamics can be used in a traditional filter to maintain a high-quality estimate of the 
state. 



5.1    Neural Net Augmentation 

In deriving the controller for a UAV, the best that can be done is to use the nominal system 
dynamics in the derivation. This creates a controller that will probably work fairly well, 
however, it is certain that there will be at least some difference between the nominal system 
and that of any actual UAV. 

In controlling a UAV in close quarters or in formation, it is likely that we desire not only a 
stable controller, but one that produces the actual commanded output, at lease for a subset 
of the states. Sharma and Calise[14] derived the theory to allow a neural net to augment 
the nominal linear controller to achieve this. There are obvious restrictions, but not onerous 
ones. 

In their work, however, the example system was very simple. In this effort, Albs-Bohorquez[15] 
extended this work to the longitudinal dynamics of an aircraft. In simulation, it was possible 
to force an aircraft (a Cessna 172) to follow nearly precisely the altitude profile commanded 
by a linear controller derived for an entirely different craft (a NAVION). This reference is 
included as Appendix D. 

5.2     On-line Parameter Estimation 

In this subset of the effort, the UAV runs three filters in parallel. The first is the enhanced 
data fusion filter, including the vision information as in [6]. The second is a real-time param- 
eter estimator, using standard techniques to find values for the aircraft linear coefficients. 
The third is a standard linear Kalman Filter, which uses the linear models from the second 
in a state estimator. This state estimator does not use the GPS as a sensor. However, once 
a reasonably accurate model of the UAV dynamics has been obtained, the Kalman Filter is 
able to estimate the states with good accuracy based on input from the inertial navigation 
system and the vision sensor. 

While the basic ideas of parameter estimation for a dynamical system are well-known [16], 
it was not possible to find an instance of on-line implementation for a UAV in the current 
literature at the beginning of this effort. This is no longer true; results that partly parallel 
some of the developments under this effort have since appeared in Farrell and Polycarpou 
[17]. These investigators used the estimates in a feedback loop to update ongoing controls, 
however; to our knowledge there has been no other effort to use the estimates in this fashion. 

In this work, using simulated data, it was possible to estimate the linear coefficients during 
the first phase of flight. After this, knowledge of GPS was switched off, and the vehicle 
continued using the estimated plant and control coefficient matrices. No knowledge of these 
matrices was assumed at the beginning of the flight. Heuristic methods were used to deter- 
mine when the linear models were sufficiently good. 

The results of this effort were promising. The most immediate shortcoming is that the 
models used were the standard, separated longitudinal and lateral linear dynamics, as in 
Nelson[18]. While this is standard, and works very well for flight near the straight and level 



reference condition, it does not allow for kinds of maneuvers we expect from UAVs in tight 
confines. It leads to a secondary problem in that data during violent maneuvers tends to 
cause the estimates of linear coefficients to decay. 

There are several directions in which this part of the work, in particular, could be extended. 
Inclusion of some limited, well-understood nonlinear dynamics should be included in the 
dynamics model. Weighting of the output of the data fusion filter should be included to 
speed convergence of the dynamics estimator. The results of the effort, and several further 
suggestions, are in Sviridove[19], which is included as Appendix E. 

6    Conclusion 

The effort reported included several subsections, each of which achieved at least minor suc- 
cess. Results are reported, primarily in appendices. At least two areas, those of cooperative 
observation of occluded ground targets, and on-line parameter estimation, deserve much 
more attention. 

The effort reported has resulted in the publication of one paper, and five master's theses. 
The theses are included as appendices, as they are not readily available without charge, and 
because summary of the significant results is almost impossible in a several-page executive 
summary. The paper is included because it is not very long. 
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Including Vision Information in a GPS/INS Fusion 
Filter 

Rajtilok Chakravarty* and David F. ChichW 
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Autonomous, unpiloted aerial vehicles are considered an important part of near-term 
reconnaissance and other missions. This paper considers the use of such vehicles in which 
GPS and inertial systems are the primary navigations sensors, with a vision sensor also 
available. The vision sensor is used to approximate a velocity direction, and this measure- 
ment is added to the usual GPS/INS fusion filter to aid in the orientation approximation. 
The gain in accuracy from this addition is considered. Further, the use of this measure- 
ment in cases in which there are too few satellites for a GPS position and velocity solution 
is considered. When three satellites are available, the range and range-rate information 
combined with the velocity direction provides a reliable solution. 

I.    Introduction 

Unmanned systems require information about the vehicle states such as position, orientation, and so 
forth to perform adequately. This information is derived from the output of sensors such as Global Positioning 
System (GPS) receivers, and an Inertial Navigation System (INS). In many cases, particularly for low- 
cost, expendable vehicles, these are off the shelf sensors, readily available in the market, with poor signal 
characteristics. Of course, many of the state values cannot be measured directly, due to physical constraints. 
In the case examined, the available sensors are an INS, a GPS, and a vision sensor. We use an Extended 
Kalman Filter implementation of the GPS/INS fusion filter here to give us vehicle state estimates of sufficient 
accuracy. 

Data from a simulated aircraft and sensor model was used for the verification of the Extended Kalman 
Filter. 

I.A.     Basic Form and Simplifying Assumptions 

I.A.I.    Instrumentation 

The instrumentation available on the UAV includes a 3-axis accelerometer, 3-axis gyro, and a GPS receiver. 
We also have a vision sensor fixed to the body coordinate frame that gives us velocity direction information. 
The information from the INS (consisting of the accelerometers and the rate gyros, with some smoothing 
and signal processing) can be read at a much higher rate than GPS. 

Accelerometers: The accelerometers return sensed acceleration at their location, in the accelerometer 
coordinate frame. This is fixed to the body frame and nominally aligned with it. 

Rate Gyros: These are co-mounted with the accelerometers, and share an axis system. They return 
sensed angular rates at their location. 

'Graduate Student Researcher, Department of Mechanical and Aerospace Engineering 
t Assistant Professor, Dept.of Mechanical and Aerospace Engineering. 
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GPS: The GPS receiver provides both inertial position and inertial velocity. The position is provided 
as latitude, longitude and altitude above sea level. The velocity is provided in Northward, Eastward and 
Downward components. 

LA.2.    Assumptions 

In implementing the navigation solution, we make some simplifying assumptions. Some of these are due to 
the quality of the instrumentation that we have, and some due to the nature of the mission for which the 
flight computer is needed. 

Assumption 1.1: Given the level of accuracy of out inertial sensors, the rotation rate of the earth is 
lost in the noise. Therefore, we will assume the Earth Centered Earth Fixed (ECEF) frame to be inertially 
fixed. Also the range of operation of the vehicle is sufficiently small that the curvature of the Earth is 
negligible, and we will assume a flat-Earth approximation to be sufficient. 

Assumption 1.2: We assume that the drift rate of the accelerometers and the rate gyros is sufficiently 
small that it need not be included in modelling them. The estimate of the bias which we assume to be 
constant in this case, should track a small drift rate. 

Assumption 1.3: The inertial measurement unit is mounted sufficiently close to the center of mass of 
the vehicle that we need not include the lever arm between it and the center of mass in our calculations. 
Alternatively, as in this case, we can directly track the position of the IMU and base all the relevant 
calculations on that. 

Assumption 1.4: The position of the GPS antenna relative to the center of mass is non-trivial, but 
known. 

LB.    Filter Structure: 

This filter will differ from a textbook estimation filter in that the "process" is the state of the system as 
driven by the readings from the IMU. Therefore, the noise in the IMU measurements takes the place of 
process noise. It is only the noise in the GPS readings that comes into the filter as measurement noise. This 

■formulation of the GPS/INS filter is standard, and further details are available in,1 among others. 

I.C.     Filter States: 

In the case of this particular navigation filter implementation, we add the decision to describe the aircraft 
orientation using quaternions, rather than the more familiar Euler angles. With this decision, we have a 
sixteen-state filter; 

p —> Inertial position 

v —> Inertial velocity 

q —> Quaternions 

b —► Accelerometer biases 

(p —f Rate Gyro biases 

A bias is defined as a constant error in the measurements. Note that we consider the ECEF frame to 
be the inertial frame. Also in this filter implementation the gravitational effects are taken care of by the 
constant vector g incorporated in the dynamical model of the system where it is defined as shown below 
with units of (m/sec2). 

g= fo   0    9.8ll (!) 
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II.    Equations 

II.A.    Measurement Equations 

Let SLS and ws be the measured accelerations and angular velocities, respectively. We have assumed that 
these measurements are affected by constant biases and white noise as given in eq. (2) and eq. (3) below, 
where it is understood that these values are expressed in the body coordinate system. 

as    =    a + b + wa 

OJS    =    u; + (p + Wu 

(2) 

(3) 

The unsubscripted values are truth values; those subscripted with s are the sensed values.  The terms wa 

and ww are zero-mean with noise processes of known variances; wa ~ N{0,Va) and w^ ~ 7V(0, VJ) 

The GPS measurements of position and velocity are likewise subject to measurement noise, but we 
assume that they have zero bias. Thus, 

(4) 

(5) 

PG PG+wp 

VG    =    v0 + w„ 

The subscript G specifies that the measurement is made by the GPS unit. 

II. B.     Dynamical System Equations: 

The equations of motion for these variables are 

P 
v a^ + g 

q    =    -Qq 

(6) 

(7) 

(8) 

where a1 is the imposed acceleration on the craft which accounts for all forces except gravity. It is expressed 
in the inertial frame, fi is given by 

0       —IJJX     ~ljJy     ~u 

OJx 0 W.        —to 

0 

0 

0) 

Here, a;x,wy,  and OJZ are the components of ui, the rotation rate of the vehicle with respect to the 
inertial frame of reference. 

In terms of the measured values, we can write the dynamical system equations as 

p    =    v 

v   =   Lj6(q)[a,-b]-Ljr6W0 + g 

(10) 

(11) 

where LJJ is the transformation matrix from the body to the inertial frame of reference in terms of the 
quaternions. 

The dynamic system equation for the quaternions is 

q = -n(ws - (p)q - -n{-wu)q 

For the constant accelerometer and gyro biases we have 

b =  o 
if   =   o 

(12) 

(13) 

(14) 
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III.    Extended Kalman Filter Implementation 

For completeness, we give a brief overview of our implementation of the Extended Kalman Filter. The 
full derivation follows the one given in1 closely. 

Consider the equations for a nonlinear system 

x(i)    =    f(x(t),t)+a;(t) (15) 

z(tfc)    =    h{x(tk),tk)+u{tk) (16) 

where we assume that || and |^ is defined for all x and time t. u) and v are assumed to be uncorrelated 
white noise processes having Gaussian distribution as before. 

At the outset the reference or nominal trajectory starts from the initial condition x(*o) = XQ and satisfies 
the differential equation 

k(t) = f(Mt),t) (IT) 

Associated with this nominal trajactory would be the measurement equation 

z{tk) = h[±{tk),tk) (18) 

Let 
x = x + 5x 

then expanding about the nominal trajectory and dropping higher-order terms gives 

5x(t)«F[x(t),f]<5x + «(i) (19) 

where 

F[x(t),i]4§ 
O^ x=x(t) 

Similarly the measurement equation can also be expanded as 

(20) 

z{tk) = h(x(tfc) + (5x, tk) + v{tk) 

fo + v{tk) (21) h(x(tfc),tfc) + — 

With the definition of i{tk) given in eq. (18), the linearized dynamic equation for measurement perturbations 
becomes 

y(ifc) = z(tfe) - z(tfc) = H{*(tfc),«fc](Jx + v{tk) (22) 

where 

H[x(tfe)5ffc]4^ (23) 

The extended Kalman filter measurement update incorporates the measurement z(tfc) = zfc by means 
of 

Kfc    =   P^HnHfcP^ + Rfc]-1 (24) 
x+    =    xfc-+Kfc[zfc-Hfc(xfc-)] (25) 
K    =    Pfc-KfcHfcPfc- (26) 

where H is given by eq. (23). Here, R is the covariance of the sensor readings. The estimate is propagated 
forward to the next sample time tk+i using the equations 

x^i = n+ r+lmt,t)<*t (27) 
jtk 

P,-+1    =    0fcP+^ + Qfc (28) 

4 of 10 

American Institute of Aeronautics and Astronautics 



where <£ is the state transition matrix defined by 

ij) = 'P<i>\    where    4>{tk) = I (29) 

Note that we have, as in1,2 and others, chosen to use the states themselves as our filtered variables. A 
second approach, often used in extremely high-accuracy implementations, is to write the filter in terms of 
the deviations from the nominal trajectory,3 and add these corrections to the propagated nominal. 

III.A.     The Vision Based Update 

We use the standard pin-hole camera model, as in.4 While it is possible in theory to derive full state 
information from vision alone,4-6 some of the states are much harder to estimate well. More success is likely 
when at least some additional information is available.6 

Figure 1.   Pinhole camera model 

In this work, we have chosen instead to assume that only one measurement is asked of the vision sensor. 
It is easily shown5 that direction of flight of the vehicle is separable from other apparent motion of objects 
in the camera field of view. We assume that this measurement is delivered to the navigation filter. 

The velocity direction in the body frame is described by two angles as shown in figure 1. We can see 
that 

Ai 

A, 

=   tan" 

=    tan' 

(30) 

(31) 

Now, we can convert the inertial velocity into the body as 

= L6/(q)(v)/ 
(32) 

(the superscripts / and h denote the respective frames of reference). We thus have the two measurements Xi 
and A2 in terms of the states v7 and q. We use this in equations (30) and (31), and taking the appropriate 
derivatives provides the measurement coefficient matrix associated with the vision update, as in eqn. (23). 
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III.B.     Propagation between GPS Measurements 

When there is no GPS measurement, but there is an inertial measurement, we propagate the transition 
matrix 0 and the a priori estimate x. Let the measurement be taken at time fy and let tk+i = f & + A£ where 
At is a known increment.We approximate the solution to the dynamical system equations as 

Pfc+i    =    Pfc + VfcAt 

v;c+1    =    vfc + [(L/(,(qfc)[aSifc - bk]) + g]At 

qfc + -0(ws,fc - (pfc)qAi 

(33) 

(34) 

(35) 

(36) 

(37) 
bfe+i    =   bfc 

Vk+i    =    Vk 

Here as and uis are the measured accelerations and rotations respectively. Now the process noise covariance 
matrix is propagated as shown below. The value of (p is approximated as 

1 
<i>{tk+1, tk)^l+ FfcAi + -Ff.A^ (38) 

The matrix F is computed each time an inertial measurement is available.This matrix can be written 
in block form as 

(39) 

where using eq. (10) - eq. (14) we have 

"0 Is     0 0 0" 

0 0    F23 F24 0 

0 0    F33 0 F35 

0 0      0 0 0 
,0 0      0 0 0. 

F23 
Sq (q)(^ -b)] 

F24 = -Li6(q] 

F33 = \^^s -v) 
1  d 

F35 = -^-(fi(ws-<p)q) 

III.C.     Pseudorange Rate Update 

The preceding development assumes a full solution from the GPS receiver. He requires that a minimum 
of four satellites be in view however, which may not always be the case. Also, there are likely to be other 
reason why we would wish to use the pseudoranges and rates directly, rather than the receiver solution. 

Let the unit vector, u in the direction of a satellite in inertial space (NED frame) be 

u = u&i + uEi + uok 

where i,j,k are the respective unit vectors in the NED frame. Since we can express UN,UE,UD in terms of 
the azimuth and elevation angles we have the unit vector in the direction of that satellite in terms of known 
quantities. We then take the dot product of this unit vector with the velocity estimate 

PSrate = V7 • U 

Hence psrate gives us an estimate of the pseudorange rate in the direction of that particular satellite in 
inertial space. This when compared to the measured value of the pseudorange rate from the GPS receiver, 
gives us the error which drives the filter. Now taking the appropriate derivatives provides the measurement 
coefficient matrix associated with the pseudorange rate update, as in eqn. (23). 
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IV.    Simulation Runs: 

Data used to verify the traditional GPS/INS fusion filter with the vision update was simulated using a 
dynamic model of an aircraft and sensor model. The IMU data comes in at 100 Hz, the vision data comes 
in at 20 Hz and the GPS data comes in at 1Hz. We have a state estimate and its associated error variance 
coming out of the filter at 100 Hz. 

Similarly while verifying the filter based on the pseudorange rate update we bring in the pseudorange 
rate information at 1Hz. The IMU and the vision information comes in at the same rate as mentioned in 
the paragraph above. 

IV.A.     Choice of the Sensor Specifications: 

The covariances for the GPS have been chosen from a variety of sources to represent the typical values 
for such instruments. The covariances used in the INS were based on the specifications provided in the 
reference.7 

Process Noise Covariance Q: Q is taken to be a diagonal matrix with all entries zero other than those 
associated with the accelerometers and gyros. The accelerometer covariance is taken to be 0.0144 m/s2 in 
all channels. The gyro noise covariance is assumed to be 0.000144 1/s. 

GPS Noise Covariance: The diagonal elements (variances) of the sensor noise covariance matrix used 
here are 

[4.0,4.0,49.0,  0.01,0.01,0.01] 

with units of meters and meters per second, as appropriate. 

Vision Sensor Noise Covariance: The diagonal elements of the vision noise covariance matrix used are 

[0.0049, 0.0049] radians. 

Pseudorange Rate Noise Covariance: While verifying the filter based on the pseudorange rate update the 
diagonal elements (variances) of the sensor noise covariance matrix used are 

[0.1, 0.1, 0.1] m/s. 

IV.B.    Results: 

IV.B.l.    Filter with GPS and Vision Update. 

The plot in figure 2 represents the three dimensional position history of the truth that we are tracking. The 
aircraft banks to about ninety degrees when taking the two sharp left turns, one when the y coordinate is 
about —500 m and the next when the y coordinate is about —4000 m. (A third turn appears near the end 
of the data set used.) Since the data to be processed is simulated inflight data, the first data set is taken to 
be the initial conditions for the sensors. 

Shown below are the time histories of 
a couple of the filter states along with 
their associated error variance. These plots 
are based on the data processed by the 
GPS/INS fusion filter with vision update. 
In these plots, the dotted lines show the his- 
tory without the vision update whereas the 
solid line shows the history with the vision 
update. 
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IV. C.    Lateral Position 

g L iLJ 

Time (sees) 

(a) Lateral position 

Time (sees) 

(b) Variance estimate 

Figure 3.   Lateral position estimate and estimated variance. 

Figure 3(a) and shows the estimated lateral position. The estimates with the vision update and the ones 
without the update virtually superpose. The left turns taken by the craft occur at around t = 125 sec and 
around t = 190 sec. In figure 3(b) notice the fact that the excursion in the error Variance history without 
the vision update of about 90m at t = 125 sec and 50m at t = 190 sec are not seen in the error variance 
with the vision update. Similar behavior was seen in the other position variables. 

. 
IV.D.     Quaternion-3 
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Figure 4.   Estimate and variance of quaternion 93 

The quaternions describe the orientation of the aircraft in the local frame. Here we see distinct differences 
between the plots for the estimates with the vision update and the one without it. The estimate is nearly 
exact during the steady portion of the flight, reflecting the additional information from the vision sensor. 

In figure 4(b) we have the estimated error variance for the third quaternion. Unsurprisingly, the variance 
grows during the steady phases of the flight when there is no vision update. The additional information 
from the vision sensor makes the angular states fully observable, however, and the variance estimate remains 
nearly zero when it is included. 
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IV.E.     Filter with Pseudorange Rate and Vision Update. 

In the situation when we don't have a GPS solution and are unable to provide the GPS update to the 
filter, we can use pseudorange rate information from the GPS receiver to update the filter until we have 
full GPS solution again. Investigation in that direction yields (as expected) that we need pseudorange rate 
information from a minimum of three satellites to arrive at a navigation solution of useful accuracy. 
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(a) Quaternion-3 (3 satellites) (b) Error-q.3 (3 satellites) 

Figure 5.   Estimate of qs using pseudorange from 3 satellites. 

As an illustration, we give here the results for the third quaternion. In this case, we have used only 
pseudorange rate, without including pseudorange, as the immediate goal of our work is primarily concerned 
with orientation angles. Figure 5(a) shows the estimate with 3 satellites in view. Comparison with Figure 
4(a) shows excellent agreement with earlier results, and in fact the estimate is close to truth. The estimated 
variance is however much smaller. 

100 150 
time (sees) 

100 150 
time (sees) 

(a) Quaternion-3 (2 satellites) (b) Error-q_3 (2 satellites) 

Figure 6.   Estimate of g3 using pseudorange from 2 satellites. 

Just to illustrate what happens when we have only two satellites in view, figure 6(a) illustrates the same 
estimate in such a situation and figure 6(b) illustrates the associated error variance estimate. The estimate 
is not as good, especially during the steady cruise phase at the beginning of the trajectory. It dials in quite 
well during the later maneuvering stages, however. The estimated variance indicates less confidence in the 
estimate. Formal observability analysis has not yet been done in these cases. 
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V.    Conclusion 

In this paper the traditional GPS/INS fusion filter was successfully extended to include a velocity 
direction update from a vision sensor, and the performance of the augmented filter was investigated. Results 
show that the vision information successfully improves the estimates of the state variables and lowers the 
associated error covariances. Further work in this direction using pseudorange rate data update instead of 
the traditional GPS update shows us that the filter performs satisfactorily with pseudorange rate data from 
a minimum of three satellites, and surprisingly well with data from only two. This could potentially lead to 
the filter being robust to the loss of GPS, at least for a short period of time. The results also indicate that 
the direct use of pseudorange rate information (as opposed to a velocity solution from the GPS receiver) 
might be advisable for the estimation of orientation angles. 
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